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1.0 INTRODUCTION

Under the Engineering Analysis Task of Contract F08635-87-C-0074,
two development efforts pertaining to GADS (Graphic Attitude Deter-
mination System) algorithms were pursued. These efforts resulted in
two upgrades to the GADS algorithms. The first upgrade resulted from
a direct linear algebra solution for the model drawing equations for a
body of revolution. The second upgrade resulted from developing an
error analysis that is driven by the model being displayed to deter-
mine an estimated covariance for the errors in the position and atti-
tude of the model being fit to the displayed image.
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2.0 IMPLEMENTATION OF ERIM ALGORITHM 3 FOR MODEL DRAWING

From several of the project reviews the model drawing algorithm
discussed here became known as ERIM algorithm 3. For historical back-
ground, ERIM algorithm 1 used a linear algebra solution to find the
visible edge by finding the plane through the axis of revolution of
the body and normal to the plane containing the line-of-sight and the
axis of revolution. This algorithm was used initially to increase the
model drawing speed. ERIM algorithm 2 used a linear algebra solution
to compute a point on the visible edge at each station along the axis,
by projecting the line-of-sight into the plane normal to the axis
revolution and then computing the tangent points of that projection
with the circle corresponding to the body. This corresponds to a
cylindrical approximation. The resulting models were approximately
equivalent to the original GADS algorithm and executed more rapidly.
ERIM algorithm 3 uses a more complete linear algebra solution and is
based on finding the line-of-sight which is orthogonal to the surface
normal of the body of revolution at each station along the axis of
revolution. This algorithm retains most of the speed of algorithm 2,
handles the nearly end-on case correctly, and provides for a depth
encoded outline of the model to be presented on the display.

2.1 LINEAR ALGEBRA SOLUTION FOR TANGENT POINT

Assume that the body of revolution is modeled by a series of trun-
cated cones which have a common axis (herein taken to be the X-axis).
This is the form used in the GADS model database. An additional
assumption will be used: that each individual "cylinder" in the data
base is smooth. The original data base often has objects with steps
or slope changes combined. The reason for the additional assumptions
is to give the user control over how the visible edges potentially
created by steps and slope changes are displayed.

The linear algebra solution to the tangent point of a line-of-
sight with a truncated cone is illustrated in Figure 1. The X-axis
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("into the paper") is the axis of revolution of the cone. The sub-
scripts b and 1 denote body and lens. The solution is based on com-
puting the two lines-of-sight, 7, (a quadric equation) which are
orthogonal to the normal to the surface of the truncated cone,

Ten =0 .

The two solutions, when they exist, correspond to the two visible
edges of the cone which are on opposite sides of the cone. The visi-
ble edges are straight lines and correspond to the intersections of
the cone with its tangent planes that pass through the origin of the
line-of-sight. To derive the solution, first let the origin of the
line-of-sight be transformed into the coordinate system of the body of
revolution. The x component, Xp - Xy, is the distance from the lens
to the plane normal to the axis of revolution at the station, X, of
interest along the axis. The vector [Yy, Z]]T is the projection of
the line from the lens to the axis of revolution onto the same plane,
whose length is Ry. The radius of the body of revolution at Xp is
Rp(Xp), where functional notation will be dropped for simplicity.
Thus T becomes

Xp = Xy]
T = Yb - X]
1y - 4]

The surface normal depends on the position on the circle of revo-
lution. The component of the normal in the plane of revolution is
radial and thus proportional to the radius vector. The component in
the x-direction is directly proportional to both the radius and the
slope of the cone. Thus n becomes,

dR; (X, )
b'™b
Y

Zy
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Setting Tsn = 0 gives
dR,
0 = -(X, = X)IRy ==+ (Y = Y)Yy + (2, - 1)L,

Because there are two unknowns Yj) and Zj, a second equation is needed.
The radius of revolution provides the needed constraint,
RpZ = Yp2 + sz.

Expressing the position on the circle of revolution in terms of com-
ponents normal and colinear with the projection of the line-of-sight
onto the plane of revolution gives

R sin¢ + Cos ¢
Zy 1 Z, -Y;

where ¢ is the angle between the lines from [Xp, Y7, Z]]T (the pro-
jected origin of the line-of-sight) to [Xy, 0, 0]T (the center of the
circle of revolution) and to [Xp, Yp, Zp]T (the tangent point).

Combining these equations gives the following equations for sin ¢
and cos ¢.

I
0 -z % - X )Ry
Ry [ Ry .
+ E:E sin ¢ Y, +cos ¢ Z, - ﬁ; Yol {sin ¢ Y, + cos ¢ Z,
Ry’ [ R) .
+ ;:7 Ls1n $ Zy - cos ¢ Yy - ﬁ; Zy| |sin ¢ Z, - cos ¢ L8
dRy [ R R
R B_op2 3 [p2;
0=-a [% - X]] ez |fR [Rl sin ’]
) 1




dR
b
R, - 2 [x - x
Sin g = b de[b 1]
1
@R
2 b 2
Ry ‘[Rb‘F[Xb‘Xl]] R,
cos ¢ =° R, = R,

where Ry is the length of the tangent from the origin of the line-of-
sight to the cone extended to Xj. If the value is imaginary, the
origin of the line-of-sight (viewing point) lies within the extended
cone and there are no visible edges.

2.2 REVISED DISPLAY ALGORITHM

The revisions to the model display algorithm have two purposes:
Some implement the new display computations and some provide addi-
tional speed. The listing of the CIRCLE 3 module in Appendix A con-
tains the important changes.

The general organization of the module has been changed to perform
the display calculations in three passes over the data for each
"cylinder" of the model. The first pass analyzes each truncated cone
to determine which viewing case to use and compute intermediate
results. The second pass computes the tangent points, marks beginning
and end of visible edges, and determines where to draw circles. The
third pass computes the data structure for driving the display rou-
tines. Before the first pass, the position of the camera is trans-
formed into "cylinder" coordinates. The result is used to form "unit"
vectors corresponding to the axis of revolution [Xy, 0, 0]7, the pro-
jection of the origin of the line-of-sight onto the plane of revolu-
tion [0, Yy, 7117, and normal to that projection in the same plane [0,
X1, -Y]]T. These "unit" vectors are rotated (not translated) into the
camera coordinate system. This allows the tangent points to be com-
puted directly in camera coordinates, which saves time by not having
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to rotate each point. The subroutines MM2 performs only rotation,
compared to MM3 which performs both rotation and translation.

The first pass analyzes each cone by computing its slope, the
radius

dR 2
[Rb - T [Xb - X1]]

of the extended cone at X;, and Ry. A total of seven cases are
delineated:

1. Inside the extended cone between truncating plane and
infinity.

Inside the truncated cone.

Inside the extended cone between truncating plane and apex.
Inside the extended cone beyond apex.

Qutside the extended cone on apex side.

[=,] (3, ] L= w N
* L] * . .

Outside the truncated cone between truncated planes (includes
the degenerate case of a cylinder, DRDX = 0).

7. Outside the extended cone away from apex side.

The values of the slope and the radius are extended to the last point
of the model so that the second pass will compute the second tangent
point on the last truncated cone.

The second pass computes the points to be connected for the vis-
ible edge and where circles are to be drawn. Cases 3, 4, and 5 cor-
respond to visible edges, and the tangent points are computed using
the values from the first pass. Non-zero radius circles are drawn at
both ends and wherever the "case" changes between visible and hidden
or between two lines hidden on opposite sides of the extended cone
apex.
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The third pass computes the display data structure, first for the
visible edges and then for the circles. It also stores the computed
depth of each point for depth encoding of the lines on the display.
This depth encoding is accomplished by the Cytocomputer after model
movement stops, when requested by the operator.




DERIM

3.0 GENERATING A THEORETICALLY BASED ERROR COVARIANCE MATRIX

The purpose of this effort was to develop a covariance matrix for
the errors in position and orientation estimates obtained using manual
GADS. The basic underlying assumption made is that a human operator
matching a wireframe model to an image is using the location of edges
and is minimizing the "overall" error of the match. This process has
been modeled by a least squares estimation process, using linearized
equations to relate the model parameters (position and orientation) to
displacements of pixels in the image.

The wireframe model used by GADS is made from line segments which
model planar structures (e.g., fins) and bodies of revolution. The
bodies of revolution are modeled as a smoothly varying series of trun-
cated cones, which result from rotating a curve made from a series of
line segments. Thus, to develop the least squares estimator, we will
examine the matching of a line segment to features in an image.

Assume that the line segment is drawn between two points of the
model, 31 and 52 and that a set of edge features were matched to the

line at locations ?i' i=1, ..., 1. Let the position and orienta-
tion parameters of the model be denoted as a vector «,

where ty = Camera x translation, in inches from model origin
ty = Camera y translation, in inches from model origin
t; = Camera z translation, in inches from model origin
r = Model roll angle
p = Model pitch angle

Model yaw angle

The position, xC = [x€, y€, zC]T, in camera coordinates of a model
point, xM = [xM, ymM, zm]T, is given by

11




o . - T
«C { cpcy sp cpsy tx «M
yc _ crspcy - Srsy crcp -crspsy - Srcy ty ym
Zc srspcy + Crsy Srcp -srspsy + crcy tz zm
h { 0 0 1 J11

where Spr Cp denote sine and cosine of the subscript p (pitch). A
perspective transformation brings points in camera coordinates into
image coordinates,

xC(2%) 7! Ky + K,

-1
]

C/.Cy-1
y (z7) k3"’k4

where ki, k2, k3, and kg are display-dependent constants.

In the matching process the operator adjusts the parameters, a, so
that the line segment has the same slope as the edge and is placed on
the edge. This corresponds to "putting a straight line" through
the points (fj, i = 1, 1) which represent the edge. Let uj and up be
unit vectors in the direction of the line segment and normal to it
respectively,

_=31"32 _=[0 1]_
T enl L

Then the distances of each feature point from the line, dj, and along
the line, 15, can be computed by

[=9
1]

i [?i B Bc] E] '

—
—t
"
—
=4l
—
(]
©
3
| .
c
=

12




SERIM
—
and

3c=% [51 ‘52] y

where Bc is the center of the line segment. For short line segments,
only the displacement will be used now in the fitting process. The
analysis can be expanded to include slope for long line segments. The
least squares fit to an individual line segment of a displacement, Ad,
along the normal is given by

I
21 .
Ad—Izm.

i=1

The errors of this process depend on the ability to locate edge
features. We will assume that the variance, adz, of the errors in
locating the edge (measuring d;) is constant over the image but depen-
dent on image quality. However, the d; will not be independent for
closely spaced dj. Therefore, we will assume a constant decorrelation
distance, \¢, along an edge which again depends on image quality. The
variance of Ad can then be expressed approximately as
2

\, 0
o 2 _ °d"d

{5y -7y

These displacements from each 1ine segment of the model are
"averaged" over the whole model by the operator in adjusting the model
parameters, a, to minimize the overall error. This process will be
represented by the least squares fit of the displacements for line
segments of the model using linearized equations. Let the displace-
ments for all the line segments of the model be denoted by

Adj,j=1,'°'t‘]t

The displacements can be expressed in terms of increments in the model
parameters, Aa, by linearizing about the estimate of the model param-

13
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eters, a. The resulting set of equations is

T

Ad. =3, Ba, j=1, ...,

J J

where EjT is the product of the normal and the matrix of partial
derivatives of P. with respect to each of the model parameters,

0P,  BP, 8P, 8P, dP. BP,
atx aty atz or op oy

-T_=-T1,.
aj = ug (J)

These equations can be weighted to be unit variance and combined
into matrix form as

where

=)
(=W
]

and

14
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The weighted least squares solution is computed using the generalized
inverse of A and is given by

-1

Ba = [ATA] AT

Ad
Given this relationship we can now derive a covariance based on small
error approximations.

3.1 DERIVATION OF COVARIANCE MATRIX

The covariance matrix for the estimated parameters of the model is
is derived from the weighted least squares solution. The covariance
of @ is given by

Cov (a) = E[[E - {a}][a - E{Z}T]] .

Assume that the initial guess for a is sufficiently close and that
the fitting process has been iterated to a stable solution. Then the
linearized weighted least squares solution derived above can be used
to compute the covariance by taking E{a} as the point of lineariza-
tion. Under theses conditions,

"
[
[~

"

_———
>

N
>
[~ d
a

@ - e(@]

Cov (a)

e (67) ) |

1

(T4 ATE{Kd quA[ATA] !

1

QO

because the displacements Ad were constructed to be a unit variance
uncorrelated random process.




DERIM
p Ame——

3.2 IMPLEMENTATION OF COVARIANCE COMPUTATION ALGORITHM

The algorithm for computing the covariance is an enhancement of
the model drawing algorithm. After the end-points of a line segment
to be drawn are computed, the contribution to the inverse of the
covariance matrix is computed. After all line segments are con-
sidered, the matrix is inverted to form the covariance.

The contribution for each line segment is the outer product of Ej
with itself normalized by the length of the line segment. Thus, the
incremental contribution to the inverse covariance is given by

xdag cov'l(E) = xdaﬁ cov'l(E) + Bl(j) - Bz(j) EjEjT

where El(j) is the pixel position of the beginning of the line
segment,

p1(j) is the pixel position of the beginning of the line
segment,

p2(j) is the pixel position of the end of the line segment, and
35 is the projection of the partial derivative matrix onto
the normal to the line segment.
The partial derivatives are computed using the chain rule. Thus, the
partial derivatives of a position in pixel space is given in terms of
camera coordinate partial derivatives by

[ -2 c Al
c c dx c 9z
K (2] [Z da; " ¥ —]

B .
Bai

where a; represents any of the model parameters. The partial deriva-
tives of the position in camera coordinates with respect to the camera
translations are constants, either zero or unity,

16
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atx aty atz
0 = &5 _ 8y 8:C
aty atz th
and
o=a_x°=g{£=ﬁ
btz 0 X aty

The partial derivatives of the position in camera coordinates with
respect to the model orientation angles are products of rotation
matrices with the position vector of a model point,

.915.
or o
0 0 0 «M
c
%¥_ - SrSpCy CrSy SrCp SrSpSy CrCy ym ’
52C CrSpr - CGC CGC -CrSpSy - SrCy n
ar |
8x°|
op i . .
Spr Cp SpSy <M
c
8y | _ |C.C C -C.S -C.C.S
3p rpy rp rpy ym '
S CC c.C -S.CS
QEE PPY rvy rpyl,m
10p |

and
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These rotation matrices are computed using a variation of the subrou-
tine for the model transformation matrix.
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